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INDISCRETE MATHEMATICS 
 

Discrete mathematics isn’t prudent mathematics; it deals with the mathematical properties 
of individual objects that can be counted using integers, like drops of water, as opposed to 
continuous mathematics, which studies objects that must be measured using real numbers, like 
the mass of a quantity of water.  This monograph contains a collection of humourous illustrations 
of some of the concepts of discrete mathematics.  My goal in writing it is to show that 
mathematics can be useful even for computer science students and, more incredibly yet, it can 
even be fun.  Hopefully, some of the material contained in this monograph will find its way into 
lectures delivered by professors other than me. 

 
CHAPTER 1. LOGIC 

 
1.1 What is a proposition? 
 

A proposition is either an assertion that is true or an assertion that is false.  An assertion 
whose truth value is indeterminate is not a proposition.  For example, "Montreal is the biggest 
city in Quebec" is a true proposition and "Montreal is the biggest city in Canada" is a false 
proposition (Toronto’s population is now greater than Montreal’s).  "Do you like Montreal?" is 
not a proposition because it is not even an assertion, and neither is "Come and live in Montreal!".  
"Quebec will be part of Canada in five years." is an assertion, but it is not a proposition because 
its truth value is as yet indeterminate; it is not yet established whether there will be another 
neverendum referendum in the next five years or, if there is one, which side will cheat enough to 
win it. 

 
Turning to more mathematical examples, 12 + 13 = 5

6  is a true proposition.  Some students 
add fractions by adding the numerators and the denominators, thus deriving the false proposition 
that 12 + 13 = 2

5.  On the other hand, x ≥ y is not a proposition because its truth value is 
indeterminate as long as the values of x and y are unknown.  Similarly, it is unknown whether the 
end justifies the means until we know what end is desired and what means will be used. 
 
1.2 Combining propositions 
 

Logic has some similarities with the algebra you're familiar with: there are constants, 
variables and operators.  But since a proposition must be either true or false, in logic there are 
only two constants: 0 meaning false and 1 meaning true.  A variable represents either a true 
proposition or a false one.  A logical operator that operates on one variable, say p, is defined by 
determining whether it is true if p is true and whether it is true if p is false.  If it operates on two 
variables, say p and q, it is defined by determining whether it is true or false under each of the 
four possible conditions (p and q true, p true and q false, p false and q true, p and q both false).  
This definition can be expressed in tabular form as a truth table.  Below are the truth tables for 
the most commonly used logical operators that act on two variables. 

 
Columns 1 and 2 of the truth tables just below list the possible truth values of the two 

propositions p and q.  Suppose that p is the proposition that it is raining and q is the proposition 
that it is freezing.  On the first line it is both raining and freezing; so there will soon be a power 
outage, causing a subsequent increase in the birth rate.  On the second line, it is raining but not 
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freezing; so we will stay indoors and watch television.  On the third line, it is freezing but not 
raining; so we will go skiing if it snows or skating otherwise.  On the fourth line it is neither 
freezing nor raining; so we will play golf.  Under any other condition we will study. 
 
 1  2       3         4         5           6           7          8              9 
p  q    p∧q   p∨q   p ⊕ q   p↔ q   p → q  q→ p   ¬q→¬p  
 1  1       1         1         0           1           1          1              1 
 1  0       0         1         1           0           0          1              0 
 0  1       0         1         1           0           1          0              1 
 0  0       0         0         0           1           1          1              1 
 

Column 3 is the truth table for conjunction: p and q.  It is raining and freezing: very bad 
weather.  Column 4 is the truth table for disjunction: p or q.  It is either raining or freezing or 
both (inclusive or): bad weather.  To exclude the possibility that it is both raining and freezing 
(leaving only moderately bad weather) we use the exclusive or (column 5). 

 
Column 7 is the truth table for implication: if p, then q. Now let p be the proposition that 

it is raining and q the proposition that I will take my umbrella.  Then the implication means that if 
it rains, I will take my umbrella.  On line 1, it is raining and I took my umbrella; so I told the 
truth.  On line 2, it is raining but I didn’t take my umbrella; so I lied and get punished by getting 
wet.  On line 4, it is not raining and I didn’t take my umbrella; so I told the truth.  On line 3, it 
isn’t raining but I took my umbrella anyway.  According to the truth table, I told the truth.  How 
could that be?  Well, I didn’t say that I would take my umbrella if and only if it rains – that is 
logical equivalence or double implication (column 6).  All I said is that if it rains, then I will take 
my umbrella.  I didn’t say what I would do if it doesn’t rain; so I can take my umbrella or leave 
it at home and I am telling the truth either way, since the facts do not contradict my claim.  
Similarly, the NDP isn’t lying no matter what they promise to do if they become the government 
because they will never become the government. 
 
 To illustrate the last two columns, let p be the proposition that Paul killed Peter and q the 
proposition that Peter is dead.  The implication p → q of column 7 is that if Paul killed Peter, 
then Peter is dead.  The implication q→ p of column 8 is that if Peter is dead, Paul killed him.  
The implication q→ p  is called the converse of the original implication p → q.  Two 
propositions are called logically equivalent if their truth tables are identical.  The converse of an 
implication is not logically equivalent to the original implication: the truth tables of columns 7 
and 8 are not identical, and in particular, on line 3, Peter is dead but not at Paul’s hand.  In 
column 9, the symbol ¬ is called negation : ¬p means not p, which is false if p is true and true if p 
is false (see the truth table below).  The implication ¬q→¬p  of column 9 is that if Peter isn’t 
dead, then Paul didn’t kill him.  The implication ¬q→¬p  is called the contrapositive of the 
original implication p → q and is logically equivalent to the original implication: the truth tables 
of columns 7 and 9 are identical.  This fact can be expressed as a logical identity: 
(¬q→¬p)↔ ( p→ q). 
 
 Other logical identities can be proved using truth tables, for example the laws of 
complementation: p∧¬ p ↔ 0 and p∨¬ p ↔1.  Let p be the proposition that it will rain.  In 
the truth tables immediately below, column 3 is the statement that it will rain and it will not rain.  
This statement is false whether or not it rains, and a weatherman making such a prediction is 
probably crazy and will certainly get fired.  It is an example of a contradiction: a proposition that 
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is false under all circumstances (its truth table has a 0 on every line).  Column 4 is the statement 
that it will rain or it will not rain.  This statement is true whether or not it rains and a weatherman 
making such a prediction is giving no information; he too will get fired and would be well 
advised to consider a career more suited to his talents, such as politics.  It is an example of a 
tautology: a proposition that is true under all circumstances (its truth table has a 1 on every line).  
A logical identity, then, is by definition a tautology. 
 
p   ¬p   p∧¬p   p∨¬p  

 1      0      0           1 
 0      1      0           1 
 

Other logical identities you can prove (and I would advise you to do so) are 
 
¬(¬p) ↔ p (double negation), 
p∧ p ↔ p  and p∨ p ↔ p  (idempotence), 
1∨ p ↔1 and 0∧ p ↔ 0 (domination), 
1∧ p ↔ p and 0∨ p ↔ p (identity), 
p∧( p∨q)↔ p  and p∨( p∧q)↔ p  (absorption), 
p∧q↔ q∧ p and p∨q↔ q∨ p (commutativity), 
( p∧q)∧ r ↔ p∧(q∧ r ) and ( p∨q)∨ r ↔ p∨(q∨ r ) (associativity), 
p∧(q∨ r )↔ ( p∧q)∨( p∧ r ) and p∨(q∧ r )↔ ( p∨q)∧( p∨ r ) (distributivity), 
¬ ( p∧q) = (¬ p)∨(¬ q) and ¬ ( p∨q) = (¬ p)∧(¬ q) (de Morgan's laws). 
 
 How many lines would a truth table have to have to prove the laws of associativity or 
distributivity?  And if there were n different variable names in an identity, how many lines would 
the truth table need to have? 
 
 An assertion expressed by means of the constants 0 and 1, variable names and operators is 
called a Boolean expression, named after the mathematician, philosopher and logician George 
Boole, who invented the prototype of what is now called Boolean logic.  Other logical operators, 
like implication, double implication and exclusive or are also logical operators, but any 
proposition can be written as a Boolean expression that uses no logical operators except 
conjunction, disjunction and negation.  Here's how it's done.  First you construct a truth table of 
the proposition (see column 3 of the truth table below).  For each line of the truth table for which 
the proposition is true – that is, where there is a 1 – you write the all the variable names, with a 
negation sign in front of each variable that is false, and you separate all the variables by the 
conjuction operator.  This conjunction will be true just for that line (see columns 4 and 7 of the 
truth table below).  Finally, you surround each of those conjunctions by parentheses and you 
separate them by the disjunction operator (see column 8).  This expression, which uses no logical 
operators except conjunction, disjunction and negation, will be true just for those lines for which 
the original proposition is true; so it is logically equivalent to the proposition. 
 
1    2       3          4          5       6          7                     8 
p   q   p ↔ q   p∧q   ¬ p   ¬ q   ¬ p∧¬ q   ( p∧q)∨(¬ p∧¬ q) 
1    1       1          1          0       0          0                     1 
1    0       0          0          0       1          0                     0 
0    1       0          0          1       0          0                     0 
0    0       1          0          1       1          1                     1 
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 Of course you don't have to write all the columns of the above truth table, only the first 
three; the others were added here to show why the method works.  Here's another example to 
illustrate this point. 
 
p   q   p ⊕ q 
1    1       0 
1    0       1 
0    1       1 
0    0       0 
 
This proposition is true when p is true and q is false and also when p is false and q is true; so it is 
logically equivalent to ( p∧¬ q)∨(¬ p∧q). 
 
 If more of the lines in the truth table are 1 than 0, there's a way to construct a Boolean 
expression that has only as many conjunctions are there are zero-lines, and if you are as lazy as 
most mathematicians, you will certainly want to do so.  After constructing the truth table of the 
proposition, you construct the truth table of the negation of that proposition by changing each 1 
to 0 and each 0 to 1 (see column 4 of the truth table below).  This table will have fewer ones than 
zeros; so the Boolean expression for the negation will have fewer conjunctions.  You write out 
that Boolean expression and then you negate it. 
 
p    q    p→ q    ¬ ( p→ q) 
1     1        1                  0 
1     0        0                  1 
0     1        1                  0 
0     0        1                  0 
 

The resulting Boolean expression for ¬ ( p→ q) is p∧¬ q; so p→ q is logically 
equivalent to ¬ ( p∧¬ q).  But of course you will want to shorten your Boolean expression even 
further, and you can do so using de Morgan's laws, named after their inventor, Augustus de 
Morgan.  Applying one of these laws to ¬ ( p∧¬ q), we obtain the Boolean expression 
(¬  p)∨  q, which is the usual way of expressing p→ q without using any logical operators 
except conjunction (not used in this case), disjunction and negation. 
 
 The study of the consequences of the above identities is called Boolean algebra.  There 
are some similarities between Boolean algebra and the algebra you're familiar with.  If you 
replace ∧ by × , ∨ by + and negation by subtraction from 1 in most of the above identities you 
get corresponding laws of algebra.  There are some exceptions; for example, 
 

1 + 1 ≠ 1 and p + (q ×  r) ≠ (p + q) ×  (p + r). 
 
There are other exceptions as well.  Can you find them all?   
 
 Of course, George Boole didn't take Boolean algebra as far as it has been taken since his 
time, but they still named that subject after him.  They also named a crater on the moon after him 
although he didn't create it, visit it or even discover it. 
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1.3 Quantified propositions 
 
 The assertion x ≥ 0 is not a proposition because its truth value is indeterminate as long as 
the value of x is unknown; such an assertion is called a propositional function.  One way to turn 
this propositional function into a proposition is to assign a value to x.  For example, if we set 
x =1, then x ≥ 0 becomes the true proposition 1 ≥ 0, whereas if we set x = –1, then x ≥ 0 becomes 
the false proposition –1 ≥ 0. 
 

Another way to turn that assertion into a proposition is to quantify x – that is, to state that 
the assertion is true for all x or for at least one x.  Suppose we want to say that x ≥ 0 for all x.  To 
express that assertion in mathematical notation, we take the letter A, the first letter of the word 
All, and write it upside down.  It then becomes the universal quantifier ∀ and the assertion is 
written (∀x) x ≥ 0.  Is this assertion true or false?  Well, if x can be any integer, then the assertion 
is false, but if x is restricted to the natural numbers (non-negative integers), then the assertion is 
true.  Without determining the possible values x can have, you can’t determine whether the 
assertion is true or false, or even whether it makes any sense: if x is a dog or a cat or an ice cream 
cone, it can’t be compared with 0.  For a quantified assertion to be a quantified proposition, you 
must define a universe of discourse, usually denoted by U; then (∀x) x ≥ 0 means that x ≥ 0 for 
all x in U.  If U consists of all the intergers, then the assertion is a false proposition, whereas if U 
consists of the natural numbers, then the assertion is a true proposition. 

 
Similarly, suppose we want to say that there exists an x such that x ≥ 0.  To express that 

assertion in mathematical notation, we take the letter E, the first letter of the word Exists, and 
write it backwards.  It then becomes the existential quantifier ∃; the assertion is written 
( ∃x) x ≥ 0 and it means that there exists an x in U such that x ≥ 0.  If U consists of all the integers, 
then the assertion is a true proposition; if U consists of the negative integers, then the assertion is 
a false proposition. 
 
 In general, a predicate is a statement about one or more subjects.  The notation for a 
generic predicate with one subject x is P(x); in our example, P(x) is the predicate x ≥ 0.  A 
predicate with two subjects x and y is denoted by P(x,y) and predicates with many subjects have 
similar notations. 
 

The proposition ∃x∃yP(x,y) means that there exists x in U and there exists y in U such 
that the predicate P(x,y) is true. Suppose that U consists of all the real numbers.  If P(x,y) is the 
predicate x + y = –1, then the proposition ∃x∃yP(x,y) is true, but if P(x,y) is the predicate 
x2 + y2 = −1, then the proposition ∃x∃yP(x,y) is false. 

 
The proposition ∀x∀yP(x,y) means that for all x in U and for all y in U the predicate 

P(x,y) is true.  Suppose that U consists of all the real numbers.  If P(x,y) is the predicate 
x2 + y2 ≥ 0, then the proposition ∀x∀yP(x,y) is true, but if P(x,y) is the predicate x + y = –1, 
then the proposition ∀x∀yP(x,y) is false. 

 
The proposition ∀x∃yP(x,y) means that for all x in U there exists a y in U such that P(x,y) 

is true.  Suppose that P(x,y) is the predicate y > x.  If U consists of all the real numbers, then the 
proposition ∀x∃yP(x,y) is true (for all x, let y be x + 1), but if U consists of the numbers 



 7 
1,2,3,4,5, then the proposition is ∀x∃yP(x,y) is false (if x = 5, then there is no y in U that is 
greater than x). 

 
The proposition ∃y∀xP(x,y) means that there exists a y in U such that for all x in U the 

predicate P(x,y) is true.  Suppose that P(x,y) is the predicate x ≥ y.  If U consists of all the 
integers, then the proposition ∃y∀xP(x,y) is false (for all y, let x be y – 1), but if U consists of all 
the natural numbers, then the proposition ∃y∀xP(x,y) is true (if y = 0, then x ≥ y for any natural 
number x). 

 
The above examples illustrate the way to negate a quantified proposition: you change 

each ∃ to ∀, change each ∀ to ∃ and negate the predicate.  For example, the negation of the 
proposition ∃y∀xP(x,y) is ∀y∃x¬P(x,y).  In the above example, the original proposition is that 
there is an integer y which is greater than equal to every integer x, and this proposition was 
proved false by using its negation: for every integer y there exists an integer x = y – 1 which is 
less than y. 

 
 If you want x and y to belong to different parts of U, you define some predicates that say 
that a subject has a particular property and then you use another operator, denoted by a colon, 
which means "such that".  For example, if you want to refer to rabbits and foxes, you let U be all 
the animals and you define the following predicates: R(x) means that x is a rabbit, F(y) means that 
y is a fox and C(y,x) means that y can catch x.  Then the statement "for every rabbit there is a fox 
that can catch it" is written as ∀x : R(x)( ) ∃y : F(y)( )C(y,x).  Its negation –  "there is a rabbit that 
no fox can catch" – is written as ∃x : R(x)( ) ∀y : F(y)( )¬C(y,x).  To negate a proposition of this 
sort, you don't negate the predicates that describe the subjects: the rabbit doesn't become a non-
rabbit and the fox doesn't become a non-fox. 
 
 Two quantified propositions are logically equivalent if they have the same truth value 
whatever predicate and whatever universe of discourse we choose, as long as they are the same 
for both propositions.  For example, the propositions ∃x∃yP(x,y) and ∃y∃xP(x,y) are logically 
equivalent: the order in which we take the x and the y is unimportant.  For the same reason, the 
propositions ∀x∀yP(x,y) and ∀y∀xP(x,y) are logically equivalent. 
 

Are the propositions ∀x∃yP(x,y) and ∃y∀xP(x,y) logically equivalent?  We have seen 
that if P(x,y) is the predicate y > x and U consists of all the real numbers, then ∀x∃yP(x,y) is 
true.  With the same predicate and universe of discourse, is it true that ∃y∀xP(x,y)?  That would 
mean that there is a real number y that is bigger than all the real numbers including y itself!  This 
proposition is patently false.  Wherein lies the difference between these two quantified 
propositions?  With ∀x∃yP(x,y) there could be a different y for each x, whereas with 
∃y∀xP(x,y) the same y has to be used with each x.  The difference can be further illustrated by a 
non-mathematical example.  A man says, "I read in the paper that in New York someone gets hit 
by a car every half hour."  His wife says, "Oh, the poor guy!"  He means that for every half hour 
there is a person in New York (a different person for each half hour) who gets hit by a car and she 
thinks he means that there is a person in New York who gets hit by a car every half hour (the 
same person for each half hour).  Such confusion could be avoided if only everyone spoke the 
language of quantified propositions! 
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CHAPTER 2. SETS 
 
2.1 Set definitions 
 
 A set is a collection of objects, called its elements.  We express the proposition that the 
object x is an element of the set S in mathematical shorthand as x ∈ S  and the proposition that x 
is not an element of S as x ∉ S .  We have already seen sets in Chapter 1: the universe of 
discourse of a quantified proposition is a set whose elements are the things that the subjects can 
be.  Another example of a set is the set of students in a classroom where I'm teaching you discrete 
mathematics.  All the elements of a set are distinct  (you’d find it strange to see a copy of 
yourself sitting beside you) and two sets are equal if they have the same elements without regard 
to order (you are not in any order, at least until I have marked your exams). 
 
 A set can be defined explicitly by listing its elements, separated by commas and 
surrounded by braces.  For example, the set of vowels is {a,e,i,o,u}, the set of natural numbers is 
{0,1,2,3,…} (the symbol … means "and so on") and the set of integers is {…,-3,-2,-1,0,1,2,3,…}. 
 

Some sets are used so often that they are given names.  The set of natural numbers (non-
negative integers) is called N for natural.  The set of integers is called Z for the German word 
Zahlen, which means numbers.  The set of rational numbers is called Q for quotient because a 
rational number is the quotient of two integers.  The set of real numbers is called R for real.  And 
the empty set, defined explicitly as {}, is called φ  for reasons I don’t know. 

 
A set S can be defined implicitly by stating a condition that an object x satisfies if and only 

if x ∈ S.  Implicit definition uses the symbol :, which means "such that".  In some textbooks a 
vertical line | is used to mean "such that", but since a vertical line also means "divides" (the 
integer d divides the integer a if there is an integer q such that a=qd), I use : to avoid confusion.  
For example, the set of even integers is defined implicitly as { x ∈Z:2|x}, which is at least 
somewhat less confusing than { x ∈Z|2|x}. 
 
 
2.2 Set operators 
 
 Suppose that S and T are two sets.  Other sets can be formed from S and T using set 
operators. 
 
 The union of S and T is the set of objects that are either in S or in T or in both.  It is 
denoted mathematically by S∪T .  The symbol ∪ was chosen because it looks like a U, which 
stands for union.  It is also called "cup" because it looks like one.  The above definition of S∪T  
is of necessity implicit; it is expressed in mathematical shorthand as S∪T = {x : x ∈ S∨ x ∈ T}.  
Note the similarity between the symbol ∪, which looks like a U, and the symbol ∨, which looks 
like V, the next letter in the alphabet, obtained from U by using a pencil sharpener. 
 
 The intersection of S and T, denoted by S∩T , is the set of objects that are in both S and 
T, so that S∩T = {x : x ∈ S∧ x ∈ T}.  The symbol ∩, sometimes called "cap" because it looks 
like one, is obtained from ∪ by writing it upside down, and the symbol ∧ can be obtained by 
either turning ∨ upside down or applying the pencil sharpener to ∩. 
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 For example, if S is the set of human males and T is the set of human children, then S∩T
is the set of boys and S∪T  is the set of people who have time to play video games. 
 
 For those who prefer pictures to symbols, these operators can be illustrated using a Venn 
diagram.  In the Venn diagram below, S and T are the interiors of the circles with the 
corresponding label, S∩T  is the region inside both circles and S∪T  consists of the three 
regions inside either or both circles. 
 

S                                                   T
 
 
 girls 
 
 
 
 
 
  
 The symmetric difference of S and T, denoted by S ⊕T , is the set of objects that are either 
in S or in T but not in both, so that S ⊕T = {x : x ∈ S ⊕ x ∈ T}.  Note that the same symbol is 
used for symmetric difference and exclusive or.  In the above example, S ⊕T  is the set of men 
and girls. 
 
 The difference of T from S, denoted by S\T or S–T, is the set of objects that are in S but 
not in T.  In the above example, S\T is the set of men and T\S is the set of girls. 
 
 The complement of S, denoted by S  or SC , is the set of objects that are not in S.  In the 
above example, what is the complement of S∪T ?  Well, women are not in S∪T  but neither are 
cats or stars.  To define the complement of a set we have to define a universal set, denoted by U
just like the universe of discourse.  Then S  is equal to U\S.  In a Venn diagram, U is represented 
by a rectangle that surrounds all the circles.  If we let U be the set of all humans, then (S∪T )C  is 
the set of women, as in the Venn diagram below. 
 
 
 
U                  S                  women                       T 
 
 
 

 
 
 
 
 
 

             

 
men 

             

girls
                     
                           

boys 

 
men 

                     
                  girls  

boys 

             S                  womenS                        T

men
                    

                  girls  

boys
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 Every logical identity has a corresponding set identity, which you can obtain by changing 
disjunction to union, conjunction to intersection, negation to complementation, 0 to the empty set 
and 1 to the universal set.  To prove the set identity, all you have to do is prove the corresponding 
logical identity by using a truth table. 
 
 We say that T is a subset of S, denoted by T ⊆ S , if every element of T is also an element 
of S.  In the above example, the set of boys is a subset of the set of children.  We say that S and T
are disjoint if they have no elements in common – that is, if S∩T = φ .  In the above example, the 
set of men and the set of women are disjoint – or at least they were before the advent of sex 
change operations. 
 
 Union and intersection can be defined on more than two sets.  The union of several sets is 
the set of objects that are in at least one of those sets and the intersection of several sets is the set 
of objects that are in all of those sets.  The following example illustrates the union and 
intersection of three sets. 
 
 In a certain high school in the United States, the graduating class has 36 students of which 
25 smoke, 23 drink booze, 21 take drugs, 15 smoke and drink, 14 smoke and take drugs, 13 drink 
and take drugs, and 8 smoke, drink and take drugs.  How many of them have none of these vices 
and are therefore considered dorks by the rest of the class?  To shorten the notation for the 
number of elements in a set S, we denote it by #(S).  If we let U, the universal set, be the set of 
students in the graduating class, S be the set of students who smoke, B the set of those who drink 
booze and D be the set of those who take drugs, then #(U)=36, #(S)=25, #(B)=23, #(D)=21, 
#( S∩B)=15, #( S∩D )=14, #(B∩D )=13, #( S∩B∩D)=8 and we want to find 
#((S∪B∪D )C ).  The easiest way to solve such a problem is by means of a Venn diagram.  A 
Venn diagram of three sets will have 8 regions representing 8 disjoint subsets of U.  Using the 
fact that if S and T are disjoint, then #( S∪T ) = #(S) + #(T), we can calculate the number of 
elements in each of these subsets and write it in the corresponding region; the number in the 
region outside of all 3 circles will be the answer to the problem (see the Venn diagram below). 
 
U 
 
                        S                                                            B 
                                    
                                                       7         

4 3 
  

 
 
                                     6                8             5  
 
 
 
                                                       2 
                            1 
                                                      D 
                                                        
 

             S                                                            S B
               
             

             

                                
                 1
                                          D

                        
         

                         
4

         

  

  

                       

3
        7        

  

  

                2

     6               5        8             
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 Other examples of the same type are easy to construct.  A certain number of aristocrats 
pay $1000 each to come to an exclusive dinner.  Three anarchists break windows and throw paint 
at the fan.  Some of the aristocrats are splattered with yellow paint, some with red paint, some 
with blue paint, and some with various combinations of colours.  How many of them are spared 
because they are already so drunk that they are under the table?  Of a certain number of music 
students, some can sing, some can play an instrument, some can compose music and some have 
various combinations of these talents.  How many of them have no musical talent and are thus 
reduced to becoming music critics?  Of a certain number of lawyers, some lie, some cheat, some 
steal and some commit various combinations of these sins.  How many of them are honest?  None 
of them (phi on them all)!  As an example using four sets, the Sorting Hat sorts the first-year 
Hogwarts students into their favourite house among those for which they are eligible.  Of a 
certain number of first-years, some are eligible for Gryffindor, some for Hufflepuff, some for 
Ravenclaw, some for Slytherin, and some for each of the various combinations of houses.  How 
many are squibs, eligible for none of the houses, and are sent back to King’s Cross Station on the 
Hogwarts Express to attend a Muggle school?  As you can see, by changing the number and 
definition of the sets and the number of elements in each of them and their various intersections, I 
can formulate a different exam question every session! 
 
2.3 Cartesian product of sets and the power set 
 
 The famous mathematician and philosopher René Descartes invented a way of expressing 
the points in a plane algebraically.  Draw a horizontal line, called the x-axis, and a vertical line, 
called the y-axis; the point of intersection of these two axes is called the origin O.  Given a point 
P on the plane, draw a vertical line through P and call F the point of intersection of this line and 
the x-axis.  Then the signed distance from O to F is called the abscissa, denoted by x, which is 
positive if F is to the right of O and negative if F is to the left of O, and the signed distance from 
F to P is called the ordinate, denoted by y, which is positive if P is above F and negative if P is 
below F (see the diagram below).  Then P is identified by the ordered pair (x,y), its co-ordinates. 
 
 
 
 
 
 
 

                                                                . P=(x,y) 
   
 
 
 y 
 
 
       O                         x                          F 
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 Since x can be any number in R, the set of real numbers, and y can also be any number in 
R, the whole plane is represented by the set of ordered pairs {(x,y) : x ∈ R ∧ y ∈ R} .  In honour 
of Descartes, we call this set the Cartesian product of R by R and denote it by R×R. 
 
 Similarly, any point P on the surface of the Earth can be represented by two co-ordinates.  
One of these is the latitude, which is the number of degrees that P is north (positive) or south 
(negative) of the equator.  To define the other co-ordinate, the longitude, we use the Greenwich 
meridian, a circle passing through the two poles and a designated spot in England.  Let O be the 
point south of Greenwich where this meridian intersects the equator.  Draw a meridian through P 
and the two poles and let F be the point nearest to P where this meridian intersects the equator.  
Then the longitude of P is the number of degrees that F is east (positive) or west (negative) of O.  
The latitude can have any value between –90 and 90, inclusive; the set of these values is denoted 
by [-90,90].  The longitude can have any value between –180, exclusive, and 180, inclusive; the 
set of these values is denoted by ]-180,180].  Then P is represented by the ordered pair (x,y), 
where x is the latitude and y is the longitude, and the surface of the Earth is represented by the set 
{(x,y) : x ∈]−180,180]∧ y ∈ [−90,90]} = ]−180,180]× [−90,90]. 
  
 Generalizing from these two examples, if S and T are two arbitrary sets, then the Cartesian 
product S ×T  is the set {(x,y) : x ∈ S∧ y ∈ T}.  For example, if S={a,b,c} and T={0,1}, then 
S×T={(a,0),(a,1),(b,0),(b,1),(c,0),(c,1)}.  It is easy to see that #(S ×T ) =#(S)×#(T ); the symbol 
× was probably chosen for the Cartesian product because it looks nice when used twice in the 
above equation. 
 
 Like union and intersection, the Cartesian product can be generalized to more than two 
sets.  Three-dimensional space can be represented by the Cartesian product R×R×R, the three 
co–ordinates being east-west, north-south and up-down (or else left-right, up-down and near-far 
if you are watching a 3D movie, except that the last co-ordinate must be positive), and altitude 
above or below sea level can be added to latitude and longitude for expressing points on or near 
the surface of the Earth.  The altitude of a fixed point on the surface of the Earth is expected to 
decrease, in some cases to negative values, as a result of global warming. 
 
 The power set of a set S, denoted by P(S), is the set of all subsets of S.  For example, if the 
set S is {0,1,2}, then P(S) = {{2,1,0}, {2,1}, {2,0}, {2}, {1,0}, {1}, {0}, {}}.  If you represent a 
subset T of {0,1,2} as a word b2b1b0, where bi =1 if i ∈T  and 0 otherwise, and write these 
words one under the other in the order in which the subsets appear above, then P(S) looks like the 
first three columns of the 8-line truth table for the propositions 2∈T, 1∈T and 0∈T.  Try it!  More 
generally, a binary string of length n – a string of n 1s and 0s, called binary digits or bits – 
represents a subset of a set with n elements   {x1, L , xn}: the ith bit of the string is 1 if xi  is in the 
subset and 0 otherwise.  The number of subsets T of a set with n elements is 2n because for each 
element xi  of S there are two possiblities: either xi  is in T or it isn't.  In some textbooks P(S) is 
denoted by 2S  (the power set 2S  is the S th  power of 2).  This notation allows mathematicians to 
write the elegant equation # 2S( ) = 2#(S ) .  Mathematicians place a high value on elegance. 
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CHAPTER 3. FUNCTIONS 
 
3.1 Definitions. 
 
 I won’t tell you yet what a function is; for the moment I’ll just tell you what a function 
does.  Given two sets D and C, a function f from D to C, denoted by f :D→C, associates to each 
element x∈D exactly one element y = f(x)∈C.  The set D is called the domain of f and the set C
is called the codomain of f.  The element y = f(x) is called the image of x under f and x is called a 
preimage of y under f.  For example, suppose that D = {1,2,3,4}, C = {Alex,Bob,Carl,David}, 
f(1) = Alex, f(2) = Alex, f(3) = Carl and f(4) = David (see the diagram below).  Each element 
x∈C has exactly one image, but one element Alex∈C has two preimages, 1 and 2, and another 
element Bob∈C has none. 
 
          

1 Alex 
 
 

2 Bob 
 
 

3 Carl 
 
 

4 David 
 
 
        D                                       C 
           A function from D to C 
  

The range of a function is the set of elements of C that have at least one preimage.  In the 
above example, the range of the function f is {Alex, Carl, David}. 
 

Suppose you are distributing candies to children.  All the candies must be given away (or 
else the children will call you a pig) and no candy can be given to more than one child (because 
the candies are too hard to be cut and letting more than one child share a candy would be 
unsanitary); so the child to which each candy is given constitutes a function from the set D of 
candies to the set C of children.  The above distribution is grossly unfair because Alex gets two 
candies and Bob doesn’t get any.  This example illustrates two properties of functions, which 
between them make a distribution fair. 
 
 A function f :D→C is called onto or surjective if every element of C has at least one 
preimage (in our model, if each child gets at least one candy).  Any function can made onto by 
reducing the codomain so that it is equal to the range of the function.  In the above example, if 
Bob kicks you and runs away crying, the codomain is now equal to {Alex, Carl, David}, the 
range of f, so that every remaining child gets at least one candy (see the illustration below). 
 

1

2

3

4

Alex

Bob

Carl

David
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1 Alex 
 
 
         2 
 
 
         3                                            Carl 

 
         4                                            David  
 
 
   
         D                                        C 
 
       The function is now surjective. 
 
 A function is called one-to-one or injective if no element of C has more than one preimage 
or, equivalently, if no two elements of D have the same image (in our model, if no child gets 
more than one candy).  Any function can be made one-to-one by choosing, for each element y of 
C that has more than one preimage, one of its preimages and deleting all the other preimages of y
from D.   In the above example, starting from the original function, you can grab candy number 2 
back from Alex and eat it yourself.  The domain is now {1, 3, 4} and every child now gets at 
most one candy (see the illustration below). 
 
 
 
 
 
         1                                           Alex 
 

 
                                                      Bob 
 
 
         3                                           Carl 
 
 
         4                                           David   
 
 
 
            D                                         C 
 
    The original function is now injective. 
 

1

        2

        3               

        4             

Alex

              Carl

            David

  1           

                       

       3               

    4             

     Alex

         Bob

          Carl

       David  
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 A function that is both one-to-one and onto is called a one-to-one correspondence or 
bijective, so that every element of C has exactly one preimage (in our model, each child gets 
exactly one candy).  Any function can be made bijective by making it both injective and 
surjective in either order (see the left illustration below). 
 
 
           1                                         Alex                      Alex                                       1 
 
 

 
 
          3                                          Carl                     Carl                                         3 
 
 
          4                                          David                  David                                      4 
 
 
 
         D                                          C                          C                                           D 
          A one-to-one correspondence                                       and its inverse 
 
 Since every element in C has exactly one preimage under f, we can define a function from 
C to D that associates to every element in C its unique preimage in D (see the right illustration 
above).  This function is called the inverse of f and is denoted by f −1.  In our model, the image 
of each child in C under f −1 is the one candy he gets to eat. 
 
 
3.2 Functions of real variables: powers, roots, exponentials and logarithms
 
 As an example in which the domain and the codomain are infinite, let f :R→R be the 
function defined by f(x) = x2 (see the left diagram below).  This function is not surjective 
because the negative numbers have no preimage (the square of a real number cannot be negative) 
and it is not injective either because, for example, f(1) = f(-1) = 1.  It can be made both surjective 
and injective by changing both the domain and the codomain to R ≥0 , the set of non-negative real 
numbers (see the right diagram below). 

    1         

        3              

      4            

     Alex  

          Carl       

        David  

   Alex      

    Carl            

  David       

       1

          3

        4
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 y=c 
 
 
  
 
                                                   x = c  
 
 
 
      neither injective nor surjective     bijective 
 
 How do we know that the function is injective?  As you can see from the diagram, it is 
strictly increasing: that is, the bigger x gets, the bigger x2 gets.  Why does that fact imply that a 
function is injective?  Well, if two members of the domain are distinct, then one of them is bigger 
than the other.  Call the bigger one b and the smaller one s.  Since f is strictly increasing, 
f(b) > f(s); so the images of b and s are unequal.  And how do we know that this particular 
function is strictly increasing?  Well, if you know calculus, you can find the derivative of this 
function, which is 2x, which is positive everywhere in the domain except at x = 0, and there is a 
theorem that says that in this case a function is strictly increasing.  Of course, this problem can be 
solved without calculus; so here goes.  If we multiply the inequality b > s by b, which is positive 
because b > s ≥ 0, we get b2 > bs.  And if we multiply the same inequality by s, which is non-
negative, we get bs ≥ s2.  Since bs is at least as big as s2 and b2 is bigger than bs, b2 must be 
bigger than s2. 
 
 This is one of many examples of problems that can be solved with or without calculus but 
the solution without calculus is more difficult.  The word calculus is a medical term meaning a 
stone, and stones can be very useful, as the following bit of history will show.  Before people 
became hunters, they were scavengers.  When they came upon the corpse of an animal that had 
been killed by a predator, they usually found that all the meat left by the predator had been picked 
clean by other scavengers, like hyenas and vultures.  There is some nourishment in bone marrow, 
and the people cracked the bones with their teeth to get to the marrow.  Unfortunately, sometimes 
they cracked their teeth as well.  Eventually they discovered that they could break the bones 
without cracking their teeth by using a stone.  If you don’t want to learn calculus, you will make 
the solution of some problems so difficult that you may crack your teeth on them. 
 
 Returning to the function f(x) = x2, how do we know that it is surjective?  Given a real 
non-negative number c, is there always a real non-negative number x such that f (x) = c?  If 
c = 0, then c has a preimage x = 0.  Suppose that c > 0.  The curve of the equation y = x2 is below 
the line y = c for x = 0 and above the line for big enough x.  Since the function f(x) = x2 is 
continuous, the curve can’t jump over the line; so it must intersect the line at some positive real 
value of x, which is the preimage of c (see the diagram above).  This is a consequence of a 
theorem of real analysis called the intermediate value theorem.  If you try to prove that the 
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function f(x) = x2 from the non-negative reals to the non-negative reals is surjective without 
using that theorem, you will surely crack your teeth. 
 
 Since this function is both injective and surjective, it has an inverse: f −1(x) = x , the 
(positive) square root of x.  Similarly, we can define xn , the nth root of x, to be the inverse of 
the function f(x) = xn, again from the non-negative reals to the non-negative reals. 
 
 Another example is the exponential function f :R→R defined by f(x) = bx, where b is 
some real number greater than 1.  To define this function, we first define it for non-negative 
integers x: b0 = 1, and for any x > 0, bx= b × b × ...× b  (x factors).  It is easy to prove that for non-
negative integers the exponential function satisfies the equations 
 

bx+y = bx × by                                                            (3.2.1) 
 
and 
 

bxy = bx( )y .                                                               (3.2.2) 
 
To prove (3.2.1) we note that both sides are equal to x + y factors of b and to prove (3.2.2) we 
note that both sides are equal to xy factors of b. 
 

We extend this definition to any integer x by stating that b−x = 1/bx.  This is the only 
definition that makes (3.2.1) hold when x + y = 0.  We further extend it to the rationals m/n, 
where n > 0, with the equation bm/n = bmn .  This is the only definition that makes (3.2.2) hold 
when x is the non-zero integer m and y = 1/m.  Finally, we extend it to any real number x by 
defining f(x) to be the limit of f(q) as the rational number q tends to x.  I invite you to prove that 
(3.2.1) and (3.2.2) hold for any real x and y, or at least for any rational x and y. 

 
This function is not surjective, because bx > 0 for any real x; so we restrict the codomain 

to R
>0

, the set of positive real numbers (see the diagram below). 
 
 

 
 
 
 
 
 
 
 
 
 
 This function is strictly increasing: if g > s, then g – s > 0, so that bg−s  > 1, and since 
bs  > 0, bg − bs = bs(bg−s −1) > 0 so that bg > bs; so it is injective.  And it is also surjective: if 
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c is any positive real number, then by making x small enough we can make f(x) < c, and by 
making x big enough we can make f(x) > c, so that there is some x for which f(x) = c.  Therefore 
this function has an inverse f −1 : R >0

→ R , which we call logb x , the logarithm of x in base b. 
 
 From (3.2.1) and (3.2.2) it is not difficult to prove the following equations: 
 

logb(mn) = logb(m) + logb(n)                                     (3.2.3) 
 

logb(mn) = n × logb(m)                                         (3.2.4) 
 

logb(n) =
logc(n)
logc(b)

 ,                                            (3.2.5) 

 
where c is any real number greater than 1.  These proofs too are left as exercises. 
 
 Logarithms were introduced by John Napier early in the 17th century as a means to 
simplify calculations.  Navigators need to be able to do arithmetic, but in those days many of 
them were unable to multiply or divide large numbers; they could only add and subtract them.  A 
table of logarithms in base 10 (common logarithms) and another table of exponentials in base 10 
enabled them to multiply and divide the numbers they needed to navigate using (3.2.3).  Of 
course they knew nothing of logarithms, but they didn't need to; all they needed to know was that 
you look up the numbers you want to multiply in a table called a table of logs, add the entries in 
that table and look up the sum in another table, called a table of antilogs.  For example, to 5 
decimal places, log10 2 = 0.30103 and log10 3 = 0.47712.  The navigator would read these 
numbers in the table of logarithms, add them and get 0.77815.  The entry for that number in the 
table of antilogs is 100.47721 = 6.00000, which would allow the navigator to multiply 2 by 3. 
 
 One day a naturalist who, like Harry Potter, can talk to snakes, was walking through a 
forest when he heard two snakes crying.  He asked them why they were crying and they said, 
"We can't have any children!  You see, we can't multiply because we're only adders."  He left 
them and returned home, feeling sad.  The next day there was a hurricane in which the naturalist 
dared not venture, but the day after that, the hurricane had passed; so the naturalist returned to the 
spot in the forest where he had met the crying snakes.  Some of the trees had been blown down 
by the hurricane.  Under one of them he found the two snakes surrounded by little snakes and 
smiling.  He asked them how they had managed to multiply and they said, "We used the logs." 
 
 Of course, if you know how to multiply, it is easier to do so than to look up logarithms in 
a table, but logarithms are still useful – for calculating powers using (3.2.4) when the exponent is 
not a small integer.  And you don't need a table of logarithms or exponentials either.  In any 
calculus textbook you can find a formula for calculating logarithms in base e = 2.718281828… 
(natural logarithms , sometimes denoted by ln): 
 

loge(1 + x) = x − x
2

2 +
x3
3 −

x4
4 + ...                                   (3.2.6) 

 
and another formula for calculating exponentials in the same base: 
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ex =1 + x +
x2

2 ! +
x3

3 ! +
x4

4 ! + ...  .                                   (3.2.7) 
 
This is how a computer or a hand-held calculator calcuates powers.  Of course, x has to be small 
for these series to converge quickly, but the computer stores floating-point numbers as an integral 
power of 2 (the exponent is the characteristic c) multiplied by a number between 1/2 and 1 (the 
mantissa m) and a sign.  To calculate em×2

c
 you first calculate em from (3.2.7) – that series 

converges quickly for x between 1/2 and 1 – and then square it c times.  And 
loge m × 2c( ) = loge(m) − c × loge(1/ 2); if 1 + x lies between 1/2 and 1, then x lies between –1/2 
and 0, and for these numbers (3.2.6) converges quickly. 
 
 And to change from base e to any other base, the computer uses (3.2.5). 
 
 Engineers use logarithms in base 10 because they need 10 fingers to build bridges.  
Computer scientists use logarithms in base 2 because they need 2 fingers to type on a keyboard.  
And mathematicians use logarithms in base e because that’s the number of fingers they need to 
hold a pen. 
 
 By this time (if not sooner), you have probably asked yourself why I would be so mean as 
to introduce indiscrete subjects like functions of a real variable such as powers, roots, 
exponentials and logarithms in a monograph about discrete mathematics.  Well, as computer 
scientists, you will be writing programs, and as good computer scientists you will want to write 
programs that the computer will execute fast.  In general, the more data you feed to a program, 
the longer it takes the program to run (for example, it takes longer to search a big array than a 
little one); so that the execution time is a function of the data size and we need to study functions 
to be able to predict the execution time of programs given the data size.  Some programs run in a 
time proportional to the data size n, some in time proportional to some power or root of n, or an 
exponential function like 2n or even log2 n , and if different programs that solve the same 
problem have different running times for the same n, you need to know which of these programs 
has the smallest running time for big n.  The size of functions of n for large n is the subject of a 
later chapter.  For the moment, trust me: you will find it useful to know the contents of this one. 
 
3.3 Some special functions 
 
 Given any set S, the identity function on S, denoted by ιS , is defined by ιS (x) = x ∀x ∈ S .  
This function is clearly bijective and it is its own inverse. 
 
 Another pair of functions we will need are x⎣ ⎦ = floor(x) and x⎡ ⎤ = ceiling(x), whose 
domain is R and whose codomain is Z.  We define x⎣ ⎦ to be the largest integer n ≤ x and we 
define x⎡ ⎤ to be the smallest integer n ≥ x.  For example, 2.6⎣ ⎦ = 2 and 2.6⎡ ⎤ = 3.  So what are 
−2.6⎣ ⎦  and −2.6⎡ ⎤?  A fly 0.6 of the way from the ceiling to the floor in a room three levels below 

street level is at a height of –2.6 (see the diagram below).  The floor is at level –3 and the ceiling 
is at level –2; so it is reasonable to define floor(–2.6) to be –3 and ceiling(–2.6) to be –2.  "Less 
than" means "more negative", not "closer to 0".  Some compilers compute the integer part of a 
real number by rounding towards 0.  A possible explanation is that on the surface of the Earth, 
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down means the opposite direction in Australia from what it means in North America; so maybe 
the people who write those compilers are Australian. 
 
 
  1 
 
  0 
 
-1 

-2 
 x 
-3 
 
 The ceiling function is often illustrated using boring examples like asking how many cans 
of paint have to be bought in order to paint a room of given dimensions.  Here is a more 
indiscrete example.  A certain female vampire needs to drink five litres of blood per week to 
survive.  Since she doesn’t like to kill people, she instead keeps a harem of men and asks them to 
donate as much blood as they can.  If each of her men can donate half a litre of blood every four 
days, what is the minimum number of men she has to keep in her harem to survive forever?  The 
demand divided by the supply per man is not an integer (calculating the exact ratio is left as an 
exercise), but since a fraction of a man could supply blood only temporarily, the number of men 
must be rounded up to the nearest integer using the ceiling function. 
 
3.4 The composition of functions 
 
 Let g be a function from A to B and f be a function from B to C.  Then f  og, the 
composition of g by f, is the function from A to C that takes every element x in A into f(g(x)), 
which is in C (see the diagram below). 
   f  og 
  
 
 
 
                x •                                              •                                            • z 
                                          g                       y                    f 
 
 
 
                 A (Montreal)                             B (Paris)                                C (Moscow) 
 
 If A is Montreal, B is Paris and C is Moscow, g an Air Canada flight from Montreal to 
Paris and f an Air France flight from Paris to Moscow, then f  og is a flight from Montreal to 
Moscow with a stopover in Paris. 
 
 Is it always true that f  og = g  of?  Well, in the above example, g  of isn’t even defined: when 
you’ve applied f you have taken the Air France flight from Paris to Moscow; so you can’t apply 
g, which takes the Air Canada flight from Montreal to Paris, because you’re in Moscow instead 

        x •           
                        

          •           
           y           

           • z
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of Montreal!  And even if f  og and g  of are both defined, they are not always equal.  If f :R→R
and g:R→R are defined by f(x) = x + 1 and g(x) = x2, then (f  og)(x) = f(g(x)) = f( x2) = x2 + 1 
and (g  of)(x) = g(f(x)) = g(x+1) = (x+1)2 = x2 + 2x + 1. 
 
 Is it always true that (f  og)  oh = f  o(g  oh)?  In the diagram below, h is the Air Canada flight 
from Montreal to Paris, g is the Air France flight from Paris to Moscow, and f is the Aeroflot 
flight that goes from Moscow to Verkhoyansk - if you’re lucky.  If you apply (f  og)  oh, you fly to 
Paris and stay there overnight, and the next day you fly to Moscow and transfer directly to the 
flight to Verkhoyansk.  If you apply f  o(g  oh), you fly to Paris and transfer directly to the flight to 
Moscow, stay there overnight, and the next day you fly to Verkhoyansk.  You’ll probably get 
more enjoyment from a night in Paris than from a night in Mosocw, but your final destination 
will be the same: Verkhoyansk, which has the coldest winters in the Northern hemisphere (the 
average January temperature is -50 degrees Celsius and the record is near -70).  With functions, 
what counts is the final destination; so yes, (f  og)  oh=f  o(g  oh). 
 
                   f  o(g  oh) 
 
                                           g  oh                        Moscow                      Verkhoyansk 
 
  

 
  
 
                           h                                  g                                  f 
 

 
 Montreal                           Paris                               f  og 
                                                                            
 
                                                    (f  og)  oh 
 
 Having introduced the inverse of bijective functions and the composition of two 
functions, let’s combine these two concepts in two different ways. 
 

First, suppose that f :A→B is a bijective function so that it has an inverse f −1 : B → A .  
What is the function   f o f −1?   Suppose that f takes you from Montreal to Paris.  Then f −1 takes 
you from Paris to Montreal.  So   f o f −1 would have to take you from where you are now to 
where you are now.  But where is that, Montreal or Paris?  Since you first apply f −1, you would 
have to be in Paris, so that   f o f −1 takes you from Paris to Paris.  In general,   f o f −1 = ιB  and 

 f −1 o f = ιA  (see the diagram below). 
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 f −1 o f = ιA   

                                    f 
 
   f o f −1 = ιB  
   
 
 
 f −1 
 
             A (Montreal)                             B (Paris) 
 

Now suppose that g is a bijective function from A to B and f is a bijective function from B
to C.  Is f  og:A→C necessarily bijective?  First we show that since f and g are injective, f  og must 
be injective (see the diagram below).  If a and b are two distinct elements of A, then since g is 
injective, g must take them into two distinct elements of B, and since f is injective, f must take 
those elements of B into two distinct elements of C, so that f  og is indeed injective.  From the 
same diagram, we see that f  og is surjective.  Let d be any element of C.  Then since f is 
surjective, d has a preimage c in B, and since g is surjective, c has a preimage a in A.  Since f og
takes a into d, d has a preimage a in A, so that f  og is indeed surjective. 
 
             A                                       B                                        C 
 
  c 
           a •                                       •                                        • d 
 
                                  g                                       f 
           b •                                       •                                        • 

 
 
 

 Since f  og is both injective and surjective, it is bijective; so it has an inverse   ( f o g)−1.  Is 
this inverse equal to   f −1 o g−1 or   g−1 o f −1?  From the diagram below, you can see that 

 ( f o g)−1=  g−1 o f −1. 
   ( f o g)−1 
 
                    g                                         f    

 
  

 
 

   g−1 f −1 
 
 
   g−1 o f −1 
 

      a •          

                        
       b •          

c
          •         

                        
          •          

          • d

          •
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 This may seem counter-intuitive, but it shouldn't be.  If you do one thing and then a 
second thing, to restore the original situation you first have to undo the second thing and then the 
first thing.  For example, if you first fly from Montreal to Paris and then from Paris to Moscow, 
then to get back to Montreal you first have to fly from Moscow back to Paris and then from Paris 
to Montreal.  If you put a briefcase on a table and then put a book on top of the briefcase, to lift 
them both off the table one at a time you first have to take the book off the briefcase and then 
take the briefcase off the table.  When you get dressed you first put on your socks and then your 
shoes, and when you get undressed you first take off your shoes and then your socks.  I could 
give other examples of the same type, but that would be too indiscrete even for me. 
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CHAPTER 4. MATHEMATICAL INDUCTION 

 
 Induction is the process of generalizing from observations.  Here is a mathematical 
example of this process.  Take the number 41.  It’s a prime – that is, the only positive divisors of 
41 are 1 and 41.  Now add 2 to 41 and you get 43, another prime.  Now add 4 to 43 and you get 
47, another prime.  Add 6, 8, and then 10, and you get 53, 61, 71, all primes.  There were those 
who, like some programmers who think that their program works for all inputs if it works for the 
inputs they tested it on, concluded that all the numbers obtained this way are primes.  In fact, the 
first 40 numbers you obtain are indeed primes, but not the 41st.  The process of generalizing from 
observation does not always lead to a correct conclusion, and if your program gives the wrong 
answer for the input the user enters and he complains to your boss, you could get fired. 
 
 Here is another example.  Suppose your teacher gives you a detention and tells you that 
you have to sit at your desk until you have added all the numbers from 1 to 100, and that if you 
get the wrong answer, you will get a detention every day for a week.  You add the numbers one at 
a time: starting with 1, you add 2 and get 3, add 3 and get 6, add 4 and get 10, add 5 and get 15, 
add 6 and get 21, add 7 and get 28, add 8 and get 36, add 9 and get 45, add 10 and get 55, add 11 
and get bored; so you look for a shortcut.  You divide each current sum by the number n you just 
added and make a table of values (see the table below).  Comparing this quotient with n, you see 
that it is equal to (n+1)/2 for each n from 1 to 10. 
 
      n            1    2    3    4    5    6    7    8    9   10 
1 + 2 + … + n      1    3    6   10   15   21   28   36   45   55 
(1 + 2 + … + n)/n  1  1.5    2  2.5    3  3.5    4  4.5    5  5.5 
(n + 1)/2          1  1.5    2  2.5    3  3.5    4  4.5    5  5.5 
 
 Generalizing from these observations, you conclude that 1 + 2 + … +  n = n(n+1)/2.  If 
your conjecture is correct, then the sum you have to calculate is just 100×101/2 = 50×101 = 
5050, which is a good deal easier than adding all 100 numbers.  But, since you want to be sure to 
avoid getting more detentions, you ought to prove your conjecture before handing in your 
answer. 
 
Section 4.1 Standard induction 
 
 Mathematical induction is a way to prove that a mathematical proposition is correct.  To 
understand the principle behind mathematical induction, imagine some dominos standing in a 
row, as in the illustration below.  What will happen if you push the leftmost domino to the right?  
Any child knows the answer:  all the dominos will fall to the right. 
 
  1     2    3    4    5 ..... n n+1 … 

 
  
 … … 
 
 
 
 Now let p(n) be the proposition that domino number n will fall to the right.  The 
proposition p(1) says that the first domino will fall to the right.  The proof?  You push it.  For 
each integer n ≥ 1, the implication p(n)→ p(n +1) says that if domino number n falls to the 
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right, then domino number n + 1 will fall to the right.  The proof?  If domino number n falls to 
the right, it will push domino number n + 1, making that domino fall to the right as well.  The 
conclusion?  All the dominos will fall to the right. 
 
 In general, let p(n) be any proposition about a positive integer n.  Suppose that p(1) is 
true, and that for any integer n, p(n)→ p(n +1).  Since p(1) is true and p(1)→ p(2), p(2) must 
be true.  Since p(2) is true and p(2)→p(3), p(3) must be true, and so on.  It follows that p(n) is 
true for every positive integer n.  The process of proving that p(1) is true is called the basic step.  
The process of proving that p(n)→ p(n +1) is true for every positive integer n is called the 
induction step.  The two steps together constitute mathematical induction. 
 
 As an example, we will prove that 1 + 2 + 3 + … + n = n(n+1)/2 by mathematical 
induction. 
 

Basic step: n = 1.  With n = 1, the left side of the equation is 1 and the right side is 
1×2/2 = 1; so the equation holds for n = 1. 
 

Induction step: We need to prove that for every positive integer n, if the equation holds 
for n, then it will hold when n is replaced by n + 1.  One way to prove the implication p → q is 
the so-called direct proof: you assume that p is true and you deduce that q is true.  In this case, 
we assume that the equation holds for n (the induction hypothesis) and that n ≥ 1, and we deduce 
that the equation holds when n is replaced by n + 1.  Suppose that n ≥ 1 and that 
 

1 + 2 + 3 + … + n = n(n+1)/2. 
 
Required to prove:              1 + 2 + 3 + … + n + (n+1) = (n+1)(n+2)/2. 
 
By the induction hypothesis, we can replace 1 + 2 + 3 + … + n in the left side of the equation by 
n(n+1)/2; the left side then becomes n(n+1)/2 + (n+1).  Taking (n+1)/2 as a common factor, we 
get [(n+1)/2](n+2), which is equal to the right side of the equation.  By the principle of 
mathematical induction, the equation holds for every positive integer n, but since that kind of 
conclusion holds for every induction proof, you don’t need to write it.  Just write QED, which is 
a pedantic way of saying "end of proof". 
  
 The basic step isn’t always n = 1.  It could be any integer, just as the numerical labels on 
the dominos in the above diagram could start with 1 or with 0 or with any other integer.  In the 
following example, which will be useful in a later chapter, we will prove that 2n ≥ n for any 
integer n ≥ 0.  This example will show why it is necessary to assume, in addition to the induction 
hypothesis, that n is at least as big as the number used for the basic step. 
 

Basic step: n = 0.  With n = 0, the left side of the inequality is 1, the right side is 0 and 
1 ≥ 0, 
 

Induction step.  Suppose that n ≥ 0 and that 2n ≥ n .  Required to prove: 2n+1 ≥ n +1.  
Since the right side of that new inequality is n plus something, and the induction hypothesis states 
that 2n ≥ n, it would be useful to express the left side, which is 2n+1, as 2n + something.  Well, 
2n+1 is two times 2n; so it’s 2n+ 2n, and you need to prove that 2n+ 2n ≥ n + 1.  Now the 
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induction hypothesis states that 2n ≥ n  and since n ≥ 0 (that other assumption) you can conclude 
that 2n ≥ 1.  Adding those two inequalities, you get 2n + 2n ≥ n + 1, QED. 

 
As an exercise, try to prove by induction that that for any positive integer n, n(n+1)(n+2) 

is a multiple of 6. 
 
 One of the criticisms that is sometimes made of mathematical induction is that it uses 
circular reasoning: you’re assuming what you’re trying to prove.  Here is an example of circular 
reasoning that occurs rather often in the real world.  John has an enemy who goes around saying, 
"John is a scoundrel (or some other, less printable name).  When he says he isn’t a scoundrel, he's 
lying.  All liars are scoundrels.  Therefore, John is a scoundrel."  In this case it is easy to see the 
flaw in the logic, but if you dare to point it out to the malicious gossip, he will go around saying 
nasty things about you!  The enemies of mathematical induction claim that you’re assuming that 
p(n) is true for all n in order to prove that p(n) is true for all n.  In fact, you’re assuming that p(n) 
is true in order to prove that p(n) implies p(n+1); so the claim of circularity is false. 
 
 Another, more legitimate criticism of mathematical induction is that it can’t give you 
anything new; it just lets you prove things that you have to derive by other means.   For example, 
not too many people could guess at the formula for 1 + 2 + … + n by examining the first few 
values, and in fact the first derivation of this formula, or rather of the value of 1 + 2 + … + 100, 
was not obtained using mathematical induction. 
 
 The great mathematician Karl Friedrich Gauss obtained a great many results in 
mathematics, but the one of which he was the most proud was the one he discovered when he 
was only ten years old.  According to legend, his whole class was given a detention and required 
to calculate 1 + 2 + 3 + … + 100.  All the other pupils worked for the better part of an hour and 
they all got different answers, all of them wrong.  Little Karl got the right answer in only two 
minutes, handed it in to the teacher, and then ran out of the classroom as fast as he could before 
his classmates could catch him and beat him up.  Here is his calculation.  1 + 100 = 101, 
2 + 99 = 101,  3 + 98 = 101, … , 50 + 51 = 101.  Adding up these 50 equations, he got 
1 + 2 + 3 + … + 99 + 100 = 50×101 = 5050. 
 
 This method can be generalized to obtain the formula for 1 + 2 + … + n. 
Let S =     1     +      2    +  …  +  (n-1)  +   n.  Writing the same list of numbers backwards, we get 
      S =     n     +   (n-1)  +  …  +     2   +    1.   Adding these two equations, we get 
    2S = (n+1) +  (n+1) +  … + (n+1) + (n+1) = n(n+1) because there are n copies of n + 1.  
Dividing by 2, we get S = n(n+1)/2. 
 
 When I was considerably older than 10 (more than 3 times as old, I admit to my shame), I 
found another proof of the same formula.  The proof is certainly not original, but the story behind 
it is.  I taught mathematics for two years at the University of Bordeaux, and during my stay in 
France I noticed that when French people enter a room, each Frenchman who enters the room 
shakes hands with every other Frenchman who is already in the room.  Now suppose that n + 1 
Frenchman enter a room one at a time.  The second Frenchman to enter the room shakes hands 
with 1 other Frenchman, the first one to enter.  The third Frenchman shakes hands with 2 others, 
the fourth with 3 others and so on until the n+1st Frenchman shakes hands with n others.  The 
total number of handshakes is 1 + 2 + 3 + … + n.  Now let’s count the handshakes in a different 
way.  Each of the n + 1 Frenchmen shakes hands with n others, but the product n(n+1) counts 
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each handshake twice (Pierre with Paul and Paul with Pierre); so the total number of handshakes 
is n(n+1)/2. 
 
 Before returning to Canada, I took a trip to a few countries and decided to try the same 
experiment in each of them.  The British refused to shake hands because they were afraid of 
getting germs.  The Americans too were reluctant to do so, but they agreed when I offered them 
enough money.  The Germans were very co-operative: they organized a tournament.  The 
Russians would have liked to do the same thing, but they were too drunk; so I conducted a 
statistical experiment with them: what is the probability that two Russians will succeed in 
shaking hands if each of them sees two images of the other one?  Back in Canada, all went well 
until two hockey players found themselves face to face, and instead of shaking hands they came 
out fighting.  I separated them, and then the whole crowd jumped on me to punish me for having 
spoiled the pleasure they were getting from watching the fight.  I managed to escape, but I 
decided to stop the experiment.  It was too dangerous. 
 
 Getting serious (for the moment), there are conjectures for which mathematical induction 
is the best proof.  If you don’t believe me, try to prove that 2n ≥ n for any integer n ≥ 0 without 
using mathematical induction.  I guarantee that there will be an induction hidden behind whatever 
proof you come up with. 
 
 Returning to the first problem of this section, would it have been necessary to test all the 
numbers 41, 41 + 2 = 43, 43 + 4 = 47, etc. to discover that one of them wasn’t a prime?  The first 
number in this sequence is 41.  The second one is 41 + 2.  The third one is 41 + 2 + 4.  The fourth 
one is 41 + 2 + 4 + 6.  Examining these sums, we can see that the nth one is 
41 + 2(1+2+3+…+(n-1)).  Now we have already seen several proofs of the equation 
1 + 2 + 3 + … + n = n(n+1)/2.  Substituting n - 1 for n in this equation, we find that 
1 + 2 + 3 + … + (n-1) = n(n-1)/2.  Substituting that formula into the one for the nth term in the 
sequence of so-called primes, we get 41 + n(n-1).  If n = 41, we get 41 + 41×40 = 41(1+40) = 
41×41, which is not a prime.  Those who thought that their sequence of numbers consists entirely 
of primes could have figured out that they were wrong - if only they had been as smart as Gauss 
was when he was ten years old! 
 
Section 4.2 Generalized induction 
 
 With standard induction, you go from a smaller number n to a bigger number n + 1.  
There are some problems for which you have to go from a smaller number n to a bigger number 
that isn’t n + 1.  In that case you need to use a generalized form of induction where the induction 
step is proving that if p(m) is true for every m < n, then p(n) is also true.  Look at the dominos at 
the beginning of section 4.1 and imagine that every domino is heavier than its neighbour to the 
left so that it takes the combined weight of all the dominos to its left to knock it over.  If you push 
the first domino to the right, it will knock over the second one.  The combined weight of the first 
and second dominos will knock over the third one.  Then the combined weight of the first three 
dominos will knock over the fourth one, and so on, so that all the dominos will fall to the right. 
 
 Here is an example of a theorem that needs generalized induction to prove: every positive 
integer is either 1, a prime or the product of primes.  For example, 24 is a product of primes: 
24 = 2×2×2×3. 
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Basic step: n = 1.  That was one of the choices. 

 
Induction step: Suppose that n > 1 and that every positive integer m < n is either 1, a 

prime or a product of primes.  Required to prove: n is either a prime or a product of primes (we 
can eliminate the possibility that n = 1 because we already supposed that n > 1).  If n is a prime, 
we are done: that was one of the choices.  Suppose that n is not a prime.  Then, by definition, n 
has a positive divisor d that is neither 1 nor n; so 1 < d < n.  By the induction hypothesis, d is 
either a prime or a product of primes.  Let q = n/d be the quotient of this division.  Since 1 < d, 
q < n, and since d < n, q > 1.  By the induction hypothesis, q too is either a prime or a product of 
primes.  Since q = n/d, n = dq.  Then n is the product of primes: all the prime factors of d and all 
the prime factors of q (QED).  For example, let n = 24.  If d = 2, then q = 12.  Now 2 is a prime 
and 12 = 2×2×3; so 24 = 2×(2×2×3), a product of primes.  If d = 4 = 2×2, then q = 6 = 2×3 and 
24 = (2×2)×(2×3), a product of primes. 
 
 Just as with standard induction, the basic step doesn’t have to be n = 1, and, unlike 
standard induction, the basic step doesn’t have to consist of a single number: you may have to 
push over a few dominos by hand to get them to knock over the rest of them.  For example, 
consider the famous Fibonacci numbers, defined as follows: 
 

f(0) = 0, f(1) = 1; f(n) = f(n-1) + f(n-2) if n ≥ 2. 
 
 Note that the formula for f(n) contains terms of the form f(a number smaller than n).  This 
is called a recursive definition of a function; this topic will be studied in more detail in Section 
7.1.  To study the properties of a recursively defined function you have to start by constructing a 
table of the first few values of the function (see the table below). 
 
  n    0   1   2   3    4    5    6    7    8    9   10   11   12 
f(n)   0   1   1   2    3    5    8   13   21   34   55   89  144 
 
 By examining the table, you can observe that for every n ≥ 2, f(n+1) ≥ (3/2)×f(n), and 
since f(2) = 1, it would be reasonable to conjecture that f(n) ≥ (3/ 2)n−2 for every integer n ≥ 2.  
Since the formula for f(n) contains f(n-2) as well as f(n-1), you can’t prove that conjecture by 
standard induction; you need to use generalized induction.  Since the conjecture supposes that 
n ≥ 2, the basic step has to include n = 2, but it can’t consist only of n = 2.  Suppose you try to 
start the induction step with n = 3.  The formula for f(3) contains n = 1 and we’re assuming that 
n ≥ 2; so you need to include n = 3 in the basic step and start the induction step with n = 4. 
 
 Basic step: n = 2 and n = 3.   With n = 2, f(n) = f(2) = 1 and (3/ 2)n−2 = (3/ 2)0 = 1, and 
1 ≥ 1.  With n = 3, f(n) = f(3) = 2 and (3/ 2)n−2 = (3/ 2)1 = 1.5, and 2 ≥ 1.5. 
 
 Induction step: Suppose that n ≥ 4 and that f(m) ≥ (3/ 2)m−2 for every integer m such that 
2 ≤ m < n (we have assumed that m ≥ 2 because that’s where the conjectured inequality starts – 
we push over dominos 2 and 3 by hand; so we can’t suppose that the weight of dominos 0 and 1 
will help to push the other dominos over).  Required to prove: f(n) ≥ (3/ 2)n−2.  
 
 From the formula, f(n) = f(n-1) + f(n-2), and we can use the induction hypothesis to get 
inequalities for f(n-1) and f(n-2).  Since n ≥ 4, 2 ≤ n-1 < n and 2 ≤ n - 2 < n; so the induction 
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hypothesis applies to n - 1 and n - 2.  Specializing the induction hypothesis to n - 1 and n - 2, we 
find that f(n-1) ≥ (3/ 2)n−3 and f(n-2) ≥ (3/ 2)n−4 .  Adding these two inequalities, we find that 
 

f(n) = f(n-1) + f(n-2) ≥ (3/ 2)n−3 + (3/ 2)n−4 . 
 
 The two terms on the right side of the above inequality have a common factor, which we 
take out and get (3/ 2)n−4((3/2)+1).  We know, therefore, that f(n) ≥ (3/ 2)n−4((3/2)+1) and we 
want to prove that f(n) ≥ (3/ 2)n−2.  Now (3/ 2)n−2 also contains a factor of (3/ 2)n−4 ; so we take 
that one out too: (3/ 2)n−2 = (3/ 2)n−4 (3/ 2)2.  Now all we have to prove is that  
 

(3/ 2)n−4((3/2)+1) ≥  (3/ 2)n−4 (3/ 2)2; 
 
since f(n) ≥  (3/ 2)n−4((3/2)+1), this will prove that f(n) ≥ (3/ 2)n−4 (3/ 2)2 as required.  To prove 
that (3/ 2)n−4((3/2)+1) ≥ (3/ 2)n−4 (3/ 2)2 it is sufficient to prove that ((3/2)+1) ≥ (3/ 2)2.  The 
left side of that inequality is 2.5 and the right side is 2.25; so that inequality holds and the 
conjecture is proved, QED. 
 
 Can we do any better than (3/ 2)n−2?  Well, the only part of the induction step that used 
the particular value of 3/2 was the inequality ((3/2)+1) ≥ (3/ 2)2.  What is the biggest number that 
we can substitute for 3/2 and still have that inequality hold?  That’s the number x that satisfies the 
equation x+1 = x2, derived from the inequality by replacing 3/2 by x and ≥ by =.  This is a 
quadratic equation and its two roots are (1+ 5)/ 2 and (1− 5)/ 2.  We choose the bigger root 
(1+ 5)/ 2, which is between 1.61 and 1.62.  This number was called the Golden Ratio by the 
ancient Greeks because they thought that it was the most pleasing ratio of the width to the height 
of a building, and they built a lot of buildings to that specification. We can now substitute 
(1+ 5)/ 2 for 3/2 everywhere in the proof and we will have proved that f(n) ≥ (1+ 5)/ 2( )n−2 
for every integer n ≥ 2. 
 
 As an exercise, try to prove by generalized induction that if the price of mailing a letter is 
at least 12 cents, you can pay the exact price using only 3-cent stamps and 7-cent stamps.  And 
then try to generalize this assertion by proving that if m > 0 and n > 0 have no positive divisors in 
common except 1 and the price is at least (m-1)(n-1) cents, then you can pay the exact price using 
only m-cent stamps and n-cent stamps, but you can't pay exactly (m-1)(n-1) – 1 cents. 
 
Section 4.3 Proving that the smallest exception isn’t 
 
 Another form of mathematical induction uses the fact that if p(n) isn’t true for every 
positive integer n, then there must be a smallest positive integer n for which p(n) is false. 
You prove that for every exception there must be a smaller one; this contradiction proves that 
there can be no exceptions.  To illustrate this method of proof we return to the fact (which is a 
fact because we proved it in the preceding section) that every positive integer is either 1, a prime 
or a product of primes.  What we didn’t yet prove is that there is only one way to express a 
positive integer as a product of primes.  Of course, you may say, there is more than one way; 
after all, 6 = 2×3 = 3×2.  But suppose we insist that the prime factors be written in increasing 
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order.  Does this guarantee that there is only one way to decompose a positive integer into prime 
factors? 
 
 There once was a lunatic who thought otherwise.  He had learned in school that a 
kilogram is 1000 grams and that a kilometer is 1000 meters.  One day he read that a kilobyte is 
210 bytes and concluded that 210 = 1000.  Since he knew that 1000 is divisible by 5, he decided 
that there were two distinct ways to decompose 1000 into prime factors.  He bought a program 
that decomposes a positive integer into prime factors, entered 1000 into the program, and got 
2353; so he concluded that 210 = 2353.  He decided that it would be more impressive if he found 
a smaller number that could be decomposed into prime factors in two different ways; so he set 
about trying to find one.  Noticing that each of the factorizations of 1000 has 3 factors of 2, he 
canceled them from both of these factorizations and got 27 = 53.  Now the smallest factor in each 
of these factorizations was different (2 in one case and 5 in the other), but this did not dissuade 
him from seeking to diminish the number further.  He replaced the 5 in the right factorization by 
2, subtracted the resulting number from both sides of the equation and got 
27 − 2× 52 = 53 − 2× 52.  The left side of this equation has a common factor 2 and the right side 
has a common factor 52; he took out each of these common factors and got 
2(26 − 52) = 52(5− 2).  He then used his computer to evaluate the other factor on both sides of 
the equation and got 2×39 = 52×3.  He entered 39 and 3 into his prime factorization program and 
got 2×3×13 = 3× 52, a number smaller than 27 = 53 with two distinct decompositions into prime 
factors.  Dizzy with success, he continued this process until he had proved that 2 = 1.  He 
substracted 1 from each side to get 1 = 0 and then multiplied each side by x and concluded that 
x = 0 for every real number x.  He wrote up his result in an article and submitted it to a journal for 
publication. 
 

The referee rejected the article but did not ignore it.  He realized that the lunatic’s 
construction could be generalized to obtain a simpler proof of the unicity of prime factorization 
than any he had seen in the literature.  Being a scoundrel, he wrote up his result as an article and 
submitted it for publication without giving any credit to the lunatic.  Here is his article. 

 
A SIMPLE PROOF OF THE UNICITY OF PRIME FACTORIZATION 

by Samuel Oliver Brown 
 
It is a well-known fact that any positive integer can be factorized into prime factors in 

exactly one way if we insist that the factors be written in increasing order.  Here is a proof of 
this theorem that is simpler than any of the others in the literature. 

 
It can be easily proved by generalized induction that any positive integer can be written as 

a product of primes: none of them if the number is 1, one of them if it’s a prime and more than 
one if it’s composite.  We now prove that this factorization is unique.  If there were an exception, 
then let n be the smallest positive integer with two distinct prime factorizations.  We will show 
that there must be a positive integer smaller than n that also has two distinct prime factorizations. 

 
We first note that n cannot be 1, because any other factorization of 1 would have to be a 

prime, which is bigger than 1, or the product of primes, which is also bigger than 1.  We also note 
that n cannot be a prime, because n cannot be expressed as two different primes, and the product 
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of primes is not a prime.  Therefore, n must be composite, and any decomposition of n must have 
at least two prime factors. 

 
Let p1p2...pi  and q1q2...qj  be two distinct prime factorizations of n, where 

p1 ≤ p2 ≤ ... ≤ pi  and q1 ≤ q2 ≤ ... ≤ qj .  There are two cases to consider. 
 

Case 1: p1 = q1.  In this case, we have the two distinct prime factorizations p2...pi  and q2...qj  of 
the number n / p1<n. 
 
Case 2: p1 ≠ q1.  In this case, without loss of generality we can assume that p1 < q1; otherwise 
we relabel the factors by exchanging the letters p and q.  Now let m be the number p1 q2...qj  
obtained by replacing q1 by p1  in the factorization q1q2...qj  of n. Then, since p1 < q1, m < n, and 
since m > 0, n - m is a positive integer which is less than n.  We prove that n - m also has two 
distinct prime factorizations.  Subtracting the factorization of m from each of the two distinct 
factorizations of n, we obtain the equation 
 

p1p2...pi - p1 q2...qj  = q1q2...qj - p1 q2...qj . 
 

Now the two terms on the left side of this equation have a common factor p1; so it can be 
written as p1( p2...pi - q2...qj ).  The number p2...pi - q2...qj  is a positive integer (n-m)/ p1; so it 
can be factorized into primes.  When p1 is appended as a prime factor, we have a factorization of 
n - m that contains the prime factor p1. 

 
The two terms on the right side of the same equation have a common factor q2...qj ; so it 

can be written as ( q1- p1)( q2...qj ).  The number q1- p1 is a positive integer because p1 < q1; so it 
can be factorized into primes.  None of these primes can be p1 because p1 does not divide 
q1- p1; otherwise q1 would be the sum of two multiples of p1 and, therefore also a multiple of 
p1, which is impossible because q1 is a prime which is greater than p1.  Also, none of the factors 
q2,...,qj  can be equal to p1  because p1< q1 ≤ q2 ≤ ... ≤ qj .  Therefore, when the factors q2,...,qj  
are appended to the prime factorization of q1- p1 we get a factorization of n - m that does not 
contain the prime factor p1 . 

 
We thus have two distinct prime factorizations of n - m, one with p1 and the other without 

p1.  This proves that there is no smallest exception to the unicity of prime factorization and, 
therefore, no exception, QED. 

 
This article was accepted for publication; so the mathematical community got a simpler 

proof of the theorem thanks to the existence of lunatics and scoundrels in the world.  Actually, I 
discovered this proof, and it was simpler than any of the proofs in the one number theory book I 
had read.  Not being a lunatic, however, I didn’t submit my proof for publication, which turned 
out to be very fortunate because I found the same proof in the next number theory book I read! 


